KNX™ and PRAVO® – a Perfect Duo for Mercury Capture
Recent Industrial Applications in Waste Incineration

Bernhard W. Vosteen*),
Martin Maurer, Roland Milz (Karlsruhe)
Falko Lehrmann, Günter Schwabe (Bottrop)

*) corresponding author:
email: info@vosteen-consulting.de
Cologne, Germany
phone: + 49 221 680 098 22

11th Annual EUEC Conference 2008
Westin La Paloma Resort, Tucson/Arizona (USA)
Track D9, No 4 – Full-Scale Demonstrations, Thursday 01/30/2008
German Licensees of Vosteen Consulting applying KNX™ and PRAVO® industrially

Town Karlsruhe – Wastewater Treatment Plant
2 Stationary Fluidized Bed Combustors for Sewage Sludge applying NaBr and PRAVO® since 2007
Martin Maurer, Roland Milz

EGLV – Central Sludge Treatment Plant Bottrop
2 Stationary Fluidized Bed Combustors for Sewage Sludge applying NaBr since 2004
Testing PRAVO® in 2004 and again in April 2008
Falko Lehrmann, Günter Schwabe
KNX™

is a registered trade mark of ALSTOM Power - ECS, standing for the bromine based mercury oxidation technology of Vosteen Consulting

PRAVO®

was developed in 2004 - 2007 and is applied for a registered trade mark of Vosteen Consulting

Patents on the combined application are pending

PRAVO® is a proprietary anorganic polysulfide in different formulations (depending on the specific application)
PRAVO® - Production, Laboratory R&D:

VOSTEEN Consulting GmbH
Thermal Engineering and Environmental Protection

PAN-Chemie Dr. G. Fülöp e.K.
Gabor Fülöp

Martin-Luther-University Halle-Wittenberg
Institute for Environmental Engineering
Heinz Köser, Jan Schütze
Application of KNX™ and PRAVO®

in the

Communal Waste Water Treatment Plant
Karlsruhe-Neureuth
Karlsruhe has 285,000 inhabitants – Wastewater Treatment Plant Neureut (875,000 PE)
Wastewater Treatment Plant Karlsruhe-Neureut
with 2 Fluidized Bed Combustors (FBC) for sewage sludge

„No mercury into the air“

„No mercury into the neighbouring river Rhine“
FBC Unit 2

ESP WFGC stack

CEM FBC

Rotor of Decanter
<table>
<thead>
<tr>
<th>Process Description</th>
<th>Temperature</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge Sedimentation</td>
<td>4 – 5 % dry matter</td>
<td></td>
</tr>
<tr>
<td>PE-Sludge Conditioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Dewatering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centripress (25 % dry matter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Contact-Drying</td>
<td>43 % dry matter</td>
<td></td>
</tr>
<tr>
<td>Heat Recovery Boiler</td>
<td>25 bar, 300 °C</td>
<td></td>
</tr>
<tr>
<td>ESP</td>
<td>170 °C</td>
<td></td>
</tr>
<tr>
<td>WFGC</td>
<td>2 stages + wet Venturi (System LAB, 1997)</td>
<td></td>
</tr>
</tbody>
</table>
NaClO₂ to be substituted by NaBr (40 %) and TMT15® to be substituted by PRAVO®100

70 °C

First stage:
- pH = 0.5 … 1
- 2 m³, 0.1 m³/hour
- \(t_{R1} = 20 \) hours

Second stage:
- pH = 7.2
- 4 m³, 0.75 m³/hour
- \(t_{R2} = 5.3 \) hours
Injection of diluted NaBr into FBC-Freeboard with 3 lances
Most advanced German High Tech
emptying plastic bottles
filled with diluted PRAVO (no Rhine wine)

counting droplets
Results from November 2007

Hg at the stack [µg/Nm³ dry, 11 vol% O2]

S²⁻/Hg mass ratio [mg/mg]

Br/Hg [mg/mg]

Hg at stack [µg/Nm³ dry]

S²⁻/Hg scrubbers 1 + 2 [mg/mg]

S²⁻/Hg scrubber 2 [mg/mg]

150 µg Hg/Nm³ dry in the raw gas

KNX via lances
Variation of PRAVO

KNX to sludge
Variation of KNX

Variation of KNX via lances

Variation of PRAVO

of parametric variation in November 2007
How to achieve 95% mercury removal rate

- NaBr added to sludge
- NaBr injected via 3 lances

Diagram:

- **Hg removal [%]** vs **S²⁻/Hg mass ratio [kg/kg]**
- **PRAVO variation**
 - KNX not strictly constant
- **KNX variation** under high PRAVO
Variation of Br⁻/Hg and S²⁻/Hg mass ratio (1)

PRAVO is permitting lower KNX
Mode of KNX injection not important

- NaBr added to sludge
- NaBr injected via 3 lances

High Br

- High PRAVO
- S²⁻/Hg mass ratio = 20
- mainly to Scrubber 1 (pH = 0.5)

Low PRAVO

- S²⁻/Hg mass ratio = 2.5
- only to Scrubber 2 (pH = 7)
Constantly achieved:
Hg = 10 µg Hg/ Nm³ dry, 11 % O2 at stack

Day without parameter variations
Br/Hg = 252 mg/mg, S²⁻/Hg = 19.9 mg/mg
Hg = 8 ... 25 µg Hg/ Nm³ dry, 11 % O₂ at stack - „Only high PRAVO is not enough“

Interrupting KNX-feed to sludge

Br/Hg = 202 mg/mg -> 0 -> 202 mg/mg

S²⁻/Hg = 19.9 mg/mg = const.
Hg = 15 → 25 µg Hg/Nm³ dry, 11 % O₂ at stack

„Only low KNX is not enough“

S²-/Hg = 19.9 mg/mg -> 0 -> 19.9 mg/mg

Br/Hg = 256 mg/mg = const

 Interruption of PRAVO®-feed to scubber 1
Wastewater Treatment Plant Bottrop and Central Sludge Treatment Plant Bottrop
NaClO₂ substituted by NaBr since August 2004

> 90 % mercury capture

PRAVO® already tested in 2004
Bottrop Project Team (Dezember 2003 und July 2004)

Bernhard Vosteen

Günter Schwabe
Operations Manager

Yearly savings in Bottrop: 300,000 €
Ecotoxicological Assessment of the Waste Water Treatment with PRAVO®100

Preliminary results, under revision testing PRAVO®100, density: 1.28 g/l (at 20 °C)

Marine Algal Growth not inhibited
(tests according to DIN ISO 10253-L45)

Aquatic Toxicity of PRAVO®100
(tests according to OECD)

\[
\begin{align*}
\text{LC}_0 &: \quad 640 \text{ mg/l} \quad \text{(dilution 1 : 2,000)} \\
\text{LC}_{50} &: \quad 2660 \text{ mg/l} \quad \text{(dilution 1 : 500)} \\
\text{LC}_{100} &: \quad 5120 \text{ mg/l} \quad \text{(dilution 1 : 250)}
\end{align*}
\]

Diluted PRAVO®100 safe to handle
dissociation products: S, SO\(_4\)\(^2-\) limited H\(_2\)S-formation (even at pH < 1)
Specific additive costs much < 100 US $/ gHg

2.90 €/kg Br⁻ (pure)
15.2 €/kg S²⁻ (pure)
1 € = 1.35 US$

KNX™ and PRAVO® – a perfect duo indeed
Conclusions

1. KNX™ highly effective in wet and dry mercury capture
2. PRAVO® enhancing wet mercury capture
3. KNX™ + PRAVO® make sure > 90 % removal rate
4. PRAVO® in WFGD alone less effective than KNX alone
5. PRAVO® most effective in presence of Br⁻
6. PRAVO® lowers need of KNX™ (cost optimisation)

Patents pending
Thanks for Your attention

Questions?